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The images formed by a concave grating used at grazing in):idence‘ are constructed by a ray-tracing

method. The method, equivalent to a recently developed.procedure of Spencer and Murty, can be used for
i any configuration of grating and object. The results are compared with a third-order approximate theory

for the case of rays parallel to the Rowland plane.

INTRODUCTION

ECENTLY, the imaging properties of diffraction

gratings have been discussed from several points

of view. Namioka'? has studied the aberrations of

concave gratings, using Fermat’s principle. Spencer and

Murty® have developed a general rayv-tracing procedure

which includes gratings as elements of complete optical
systems.

In the present work a ray-tracing method equivalent
to that of Spencer and Murty is used to obtain the
images formed by a concave grating used at grazing
incidence, a configuration which is very important in
space spectroscopy.

The results are compared with computations using
an equation derived by Behring® from Fermat’s principle
for the special case of light rays initially parallel to the
Rowland plane.

LIST OF SYMBOLS
A (X,Y,Z)—object point
B(x,y,2)—image point
P (x1,y1,21)—point on grating
C{R,0,0)—center of curvature of grating
D—vector with direction cosines as com-
ponents
p=[a"+ (R—x*]
g=[(R— X))yt
A=matrix of transformation between (x,y,2)
and (2',y",2") systems
A=matrix of quadric coefficients

DESCRIPTION OF METHOD

From any specified object point (X,¥,Z) (which need
not be on the Rowland cylinder) a ray is constructed
which impinges on the grating at the point (x1y:121). The
elemental part of the grating centered on (x1y:21) 1Is
considered to be a plane grating whose plane is that of
the tangent plane to the spherical surface (Fig. 1); the
rulings on this elemental plane grating are the projection

1T, Namioka, J. Opt. Soc. Am. 49, 446 (1959).

2 T. Namioka, J. Opt. Soc. Am. 49, 460 (1939).

3G. H. Spencer and M. V. R. K. Murty, J. Opt. Soc, Am. 52,
672 (1962). ’

+W. E. Behring (private communication).

of the actual rulings on to the tangent plane. The

direction of the resulting diffracted ray is then deter-
mined by the diffraction equation®

m\ /o= (sina+-sing) coss, (1)

in which the parameters a8, are computed relative to
the elemental plane grating, as illustrated in Fig. 2.

The intersection of the diffracted ray with any desired
surface is then obtained and is the image point corre-
sponding to the given incident ray. This imaging surface
is usually the Rowland cylinder, or a cvlinder centered
on the grating in the case of an exit slit whose plane is
normal to the grating pole-slit line.

In this way, by having incident rays from one object
point impinge on a net of points on the grating, and
repeating this process for a desired net of object points,
the image distribution is obtained.

DETAILS OF CALCULATION
Derivation of Elemental Grating

In the following, each point such as 4(X,¥,Z) is
considered to have vector A associated with it; the
components of A being (X,V,Z). \

Let the object point be A(X,Y,Z): the incident ray
from it to an arbitrary point P(xv,z,) on the grating
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16 1. Concave grating and coordinate system, illustrating
also an elemental tangent plane grating.

5 C. S, Rupert, J. Opt. Soc. Am. 42, 779 (1952).
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has the parametric line equation

A—P
x=P+ AP 2)

I [(X—x)+ (Y =y + (2—21)2];’

where s is the distance of point x(x,y,3) from P.
If C(R,0,0) is the center of curvature of the grating,
then the normal at P has the equation:

s(C—P)
x=P+ , (3)
[(R— ¢’61)2+y12+ 212]%

where s is the distance of point x(x,y,s) from P along
the normal.
Since the grating sphere equation is

(x—RP+y+7=R, 4)
the equation of the tangent plane at P(xyv:2)) is
(1 — R)(x— R)+yiy+z1z=R (3)

The equation of the projection of the ruling at P (x1y1z,)
onto this tangent plane results from the intersection of
the plane y=1v, with this tangent plane, being therefore

(1= R) (x— R)+yi’+zz= R*. (6)

Application of Grating Equation

The tangent plane, with projected rulings on it, is the
elemental plane diffraction grating mentioned earlier.
The incident ray at P(x1y131) produces a diffracted ray
leaving this elemental grating according to the equation

m\o.= (sina+sin8) cosé,

ce=0/[1— (n/R)"},

o, being a slowly varying function of y; because the
actual ruling does not have a constant separation in the
assumed type of grating. The reference plane in which
a and B are measured is the plane through P(x1y:2)
which 1s normal to the line (6). This plane is now
considered to be the x’, y" plane of a new coordinate
system (x" ' 2’), whose &’ axis is the grating normal at
P, and whose 2" axis is the projected line (6).

(7a)
where

(7b)

N

x=P+
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Fi6. 2. Angles of diffraction equation (1), referred
to an elemental plane grating.

Thus the new 2’ axis has the direction cosine vector

-
<1

| | |
Sm e 0 =pl 05 (8)
(o4 (R—x)? ] o |
l "‘xl‘ \R—‘\‘J
the new x” axis has the direction cosine vector
R—x [R—xl
1 :
, 1
¥'= ooy =g = | (9)
C(R—w )+ yi2+al] ] :
=2 —2y |

The direction cosine vector of the new y’ axis is obtained
as the cross product of those above:

Dv=D x D=
= pg{i[y1(R—x1) JHilsr+ (R—x) ]+ k[ —maz ]}
(10)

The equation of the «’y" plane in the original co-
ordinates, it should be mentioned, is found to be

le+ (R—;X1)a—le=0. (11)

We now can find the angle « for the incident ray 4P,
defined as the angle between its projection on the x'y’
plane and the x’ axis. This projected line is most easily
obtained by finding the projection N of point 4 onto
the 1’y plane and then forming the equation of line PN'.
The equation is found to be:

E X—-Uz 1— X

\
!, @)

in which

L’ Z1X+ (R—xl)Z—le
22+ (R—x1)2 .

The angle « of the diffraction formula (7a) is

(13)

((X— U=, (V=3[ 2= U (R—)— 5, T}

I/—yl
Z—U(R—x)—2

the angle between this line (12) and the normal (x’
axis):

cosa=V@{[ X~ Uz — a1 [R—x ]+ [V — 31 ][ —y1]
+HZ-UR—x)—n][—=u]},

(14a)
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in which
V={[X—Usz—2:. P+[¥V—y P
+[Z—U(R-x1)~z1]2}‘*. (14b)

Similarly, the angle & of the diffraction formula is the
angle between P4 and PN and is therefore given by

cosd=TVW{[X~Uzi—x, [ X =2 ]+ [V -y}
+[Z—U(R—x1)—z1:|[Z—zl:]}, (153.)

in which
W=[(X—x)*+ (Y —y)*+ (Z—z)*]* (15b)

The diffraction angle 8, in the new coordinate system
(x'y'z’), can now be obtained as

sinB= (m\/o. cosé)—sina. (16)

To get the direction of the diffracted ray in the
(x'y's’) system, then, we must rotate some point
initially on the 1’ axis through an angle 8 in the PCN
plane, and then perform a second rotation on the point
to bring it out of the plane by the angle 8, both rotations
being performed in appropriate directions. The situation
is illustrated in Fig. 2. This is the usual transformation
in spherical polar coordinates (r,0,¢):

x=r sinf cos¢,
y=r sinf sing, 17
z=r cosb,

except that here §= (w/2)—8, 3=¢, so that

x'=cosé cosf,
¥y’ = cosé sing, (18)
3'=sind,

taking (1,0,0) as the original point on the a’ axis. It
should be noted that the sign of § must always be taken
opposite to that of the 2’ coordinate of the object
point 4.

Now, (x',y,7') are the coordinates of a point xp’ on
the diffracted ray, in the new system. To obtain this
point’s coordinates in the original system we must
transform these coordinates by the matrix

lDzzl Dzy, Dzz'
A=|D, D& D/|. (19)
D D# D/
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Thus, the coordinates of this point in the (x,y,z) system
are
D% cosd cosB+D.¥ cosd sinf+D.* siné|  [x,
Xp=|D,* cosb cosp+D,¥ cosd sin3+ D, sind|+ | y1|,
D, cosé cosB+D,¥ coss sinB+ D.*’ sind Z1|
(20)
remembering that the origin of the (2’,y',2’) system is
the point P(x1y1z1)-
The equation of the diffracted ray is now written
down as

x=P+sxp—P)T, (21)
where T is a normalizing factor.

IMAGE POINTS

To find the intersection of this diffracted ray with
the Rowland cylinder, we can conveniently use the
matrix method described by Heading® as follows. If
the line equation is w—w;-+sh, and the quadric equa-
tion is wT Aw=0, where w; does not lie on the quadric,
then the intersection values of s are given by

(w1T+5shT) A(w,+sh)=0 (21a)
or, expanding,
WITAW1+S(hTAW'1+W1TAh)+52hTAh=O (Zlb)

In the notation of the present problem, this equation is:

PTAP+25sLT AP+ s?LTAL=0, (22)
where:
K41
_n
P— Iz, ’ (23)
1]

A for the Rowland cylinder is

1 00 —R/2

1o 10 o

A=l 9 00 o p (24)
_R/2 00 0

and the components of L are

L.=T[g(R—x;) cosd cosB+pgy1 (R—x1) cosd sinB+pz, sind ] =TH,
L,=T{g(—1) cosé cosB+ pglz1*+ (R—x1)*] cosd sing} =TJ, (25a)
L.=T[g(—21) cosd cosB+ pg(—mz1) cosd sing+p(R—x,) sind |=TK,

in which
T=(H*+ ]+ K1, (25b)

If the intersection of the diffracted ray with a grating-

centered cylinder of radius r is desired, 4 is given
instead by

¢ J. Heading, Matrix Theory for Physicists (Longmans Green
and Company, Inc., New York, 1958), Chap. III.
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F16. 3. Images (solid line) obtained by ray-tracing method compared with images (dashed line) obtained from third-order theory
(diffraction order m = +1). Curves are illustrated for values of y1/R of : (1) —0.01, (2) —0.005, (3) 0.0, (4) 0.005, (5) 0.01.

1 00 O
010 0

A= 000 O (26)
00 0 —2

The algebraically larger value of s is used in all cases.

COMPUTER USE OF THE EQUATIONS

For a given angle of incidence, a single central ray is
calculated; i.e., the incident ray lying in the Rowland
plane and impinging on the pole (0,0,0) of the grating.
The intersection of the diffracted ray with the Rowland
cylinder is found. This gives the radius 7, of the grating-
centered cylinder upon which the image is to be formed,
assuming that we want the image in a surface normal
to the line from the image to the grating pole. A multiple
run can then be made using a net of 7 object points, and

a net of j grating points for each object point. Thus i- j
image points are obtained.

APPLICATION TO A SPECTROMETER

The procedure developed in the foregoing sections
has been applied to the problem of image formation in
a grazing incidence spectrometer designed for observa-
tion of the solar extreme ultraviolet spectrum from the
first orbiting solar observatory. This case corresponds
to observation of an extended source at a very great
distance from the entrance slit. Under such circum-
stances a beam of néarly parallel radiation from each
element of the source illuminates the entire entrance slit
so that the direction cosines for the incident rays from
a specified element of the source can be taken as the
same for every point on the grating which is illuminated
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TasLe 1. Values of 8, the central ray diffraction angles, corre-
sponding to angles of incidence ay and wavelength \ used for the
curves of Fig. 3 (m=+1).

A
g 50A 100 A 300 A
88° 85°12.7 83°31.8 79° 88
86° 85° 5.4 82° 400 78° 36.2

through the (infinitely narrow) entrance slit. For ease
of comparison with an approximate (third-order)
theory, it is assumed that the beam of radiation is
parallel to the Rowland plane. This is justified only
because in the case being considered (observation of
the sun), the maximum deviation from this plane is
only 0.005 rad.

Rays satisfying the above assumptions were selected
from a more general machine ray tracing computation
for angles of incidence of 88° and 86°. The results are
given in Fig. 3 for several different values of the angle
of diffraction B,. In each case a 5X35 net of grating points
was used corresponding to values of y;/R=0, 4-0.003,
+0.01, where y; is the horizontal distance of the
illuminated grating point from the pole of the grating
and R is the radius of curvature of the grating. The
distances of the grating points from the Rowland plane
were taken as 0, 4-0.5, and #4-1.0 cm. For 0 =0.00017361
cm, R=100 cm the wavelengths corresponding to
values of B, specified in Fig. 3 are given in Table I.
Values of AS cosp are directly convertible into A\ using
the differentiated grating equation. The values of
¥1/R==0.005 correspond to images formed by those
portions of the solar limb lving in the Rowland plane
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and represent the maximum deviations from the image
formed by the central ray from the center of the sun.

It should be pointed out that these images are ob-
tained for the specified values of a and 8 in any grating
system for values of y:/R equal to 0.01 and 0.005. The
values of wavelength for which the results apply are
found using the grating equation.

An inspection of the figures reveals the improvement
in image quality obtained either by reducing the angle
of incidence « or the value y,/R. They show also how
the curves based on third-order theory depart from the
exact ray-traced results as the angle of incidence
increases.

CONCLUSIONS

The ray-tracing method developed for a concave
grating enables one to obtain image shapes for all
configurations in which a concave grating may be used;
it can be used equally well at near normal incidence or
at grazing incidence. It serves therefore as a standard
of comparison against which approximate theories can
be tested.

Because of the ‘“‘closed” nature of the calculation,
making its use in a computer program convenient, it is
possible to generate quickly as many images as may be
required for spectrometer design purposes. A few such
images have been presented above for the OSO extreme
ultraviolet spectrometer.
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